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Abstract

Explicit volume averaging procedures are used to motivate a gradient-type description of single crys-

talline elastoviscoplasticity. Upon regarding local elastic and plastic deformation gradients within the

crystal as continuously differentiable fields, we arrive at a three-term multiplicative decomposition for the

volume-averaged deformation gradient, consisting of a recoverable elastic term associated with the average
applied stress and average lattice rotation, an inelastic term associated with the average plastic velocity

gradient, and a (new) third term reflecting the presence of the residual microelastic deformation gradient

within the volume and providing a representation of the kinematics of grain subdivision via formation of

low-angle subgrain boundaries, for example. A variant of the classical Eshelby stress tensor provides the

driving force for homogenized viscoplastic flow, with slip resistances dictated by densities of geometrically

necessary and statistically stored dislocations. Distinctive features of the continuum model include coupling

of internal elastic strain energy densities associated with residual and applied stresses, dependency of the

single crystalline effective elastic moduli upon evolution of lattice substructure, and a characteristic length
potentially based upon both the size of the crystal element used in volume averaging and the grain sub-

division measure.
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1. Introduction

A rather large number of single crystal and polycrystal plasticity models have been proposed
incorporating higher than first-order gradients (e.g., strain gradients, lattice curvature, gradient-
based dislocation density measures) of deformation in the material response [1–6]. The higher
order gradients render these classes of models non-local, effectively injecting a length scale (e.g.,
normalization constant) into the formulation on dimensional grounds, the value of which is
presumably associated with a characteristic dimension of the microstructure, such as the evolving
dislocation cell size in ductile FCC crystals, for example (cf. [7]).

Higher order deformation gradients have been included within plasticity theories for a variety
of different reasons; we elaborate briefly on a few of these here. Their inclusion has permitted
resolution of numerical difficulties associated with the solution of boundary value problems of
strain softening materials in which strain localization occurs (cf. [8,9]). Gradient based approaches
have also been used to model dislocation dynamics and pattern formation [10–12] and to describe
single and periodic shear bands in single crystals (cf. [13]) and polycrystals [12]. Other recent
applications of non-local theories include characterization of stress and strain fields, without
singularities in the field variables, at dislocation cores and crack tips [14,15] and modeling the
evolution of the plastic spin tensor in macroscopic finite deformation plasticity theory [16,17].
Perhaps the most recurrently reported motivation for use of gradient theories of plasticity has
been representation of the observed trend of increasing strength with decreasing size of considered
volume or microstructural features. Often cited is the Hall–Petch relation, in which hardness
properties (i.e., yield stress and cleavage strength) increase with decreasing grain size in poly-
crystals (specifically an inverse square-root dependence [18,19]), a phenomenon that classical local
plasticity theory, being devoid of a material length scale, is unable to capture. Shu and Fleck [20]
and Forest et al. [21] used couple stress theories (pioneered by Cosserat and Cosserat [22,23]) to
characterize Hall–Petch behavior in bicrystals and polycrystals, respectively. Fleck et al. [24]
employed a couple stress model of strain gradient plasticity to describe an increase in flow stress
with decreasing diameter of twisted thin copper wires. Shu and Fleck [25] and Hwang et al. [26]
used variations of the same strain gradient-couple stress theory [27] to capture an observed in-
crease in hardness with decreasing indentor size in pure metals.

Many theories have included a higher order gradient of elastic, plastic, or total deformation
in the expression for the yield stress, slip system hardening rate, flow stress, or the backstress,
with details of incorporation of gradients in the material response functions varying widely
among different models. In many cases the higher order gradients are associated, upon invo-
cation of differential-geometric arguments, with the density of ‘‘geometrically necessary dislo-
cations’’ (GNDs) in single crystals (cf. [28–37]) and in polycrystals (cf. [38,16,17,9,39]). These
dislocations are required to sustain the compatibility of the total deformation gradient, in con-
trast to the ‘‘statistically stored’’ dislocations (SSDs) [40] that accumulate under homogeneous
plastic flow.

Physical experiments have demonstrated how the processes of grain subdivision and dis-
location substructure formation substantially influence slip system activity, strain hardening,
stored lattice energy, and texture evolution in single and polycrystals [41–47]. Local models
have been proposed that explicitly embed subdivision and related dislocation substructure
effects into the single crystal kinematics [47–50] and the hardening and grain interaction laws



J.D. Clayton et al. / International Journal of Engineering Science 42 (2004) 427–457 429
of polycrystal plasticity theory [51,52], without explicitly considering the higher order gradi-
ents of deformation associated with geometrically necessary defects. Non-local solutions in terms
of Green�s functions [14,53] have also been developed to address defect substructure within grains
and its influence on the micro-stress fields and commensurate hardening behavior. Also
noteworthy is the recent approach of Ortiz and co-workers [7,54] for modeling additional
internal degrees of freedom associated with dislocation substructure via a non-local sequential
lamination theory. This approach permits dislocation substructure development, when ener-
getically favorable, to occur within single crystals even under uniform monotonic macroscopic
deformation, in contrast to many gradient-based approaches requiring heterogeneity of the
deformation gradient field to drive evolution of GNDs. Such lamellar dislocation structures
have been observed experimentally within ductile single crystals under monotonic loading at
large deformations [42,43,55] and are thought to influence the flow stress across a wide range
of temperatures and strain rates [44,56]. Carstensen et al. [57] viewed evolution of plastic flow
from the standpoint of a constrained energy minimization problem and remark how heteroge-
neous plastic flow (e.g., subdivision or localization) may result from a lack of convexity of the free
energy.

Also observed within pure ductile metals and certain alloys at large deformations and/or high
temperatures are long range internal stress fields associated with misoriented subgrain bound-
aries [58–60]. These internal stress fields––attributed to misorientations that develop among
neighboring subgrains––occur with a periodicity on the order of the subgrain size (cf. [43]). The
study of Gibeling and Nix [59] found that while local internal stress fields in the unloaded
configuration (i.e., residual stresses) are typically quite small compared to the average applied
stress, the applied loads can alter the arrangement of subgrain walls such that the stress fields of
adjacent dislocations do not cancel, thereby biasing the internal stress fields to a substantial
degree.

The remainder of this work is organized as follows. Kinematics and balance laws are discussed
in Sections 2 and 3, respectively, from the perspective of multiscale volume averaging. Section 4
more fully develops constitutive relations within the context of a higher order gradient, single
crystal plasticity theory. In the interest of brevity, thermal effects (i.e., temperature rates and heat
fluxes) and dynamic effects (i.e., acceleration and body forces) are often neglected.

We employ the following notation. Vector and tensor quantities are typically represented with
boldface type, while scalars and individual components of vectors and tensors are written in
italics. The index notation is often used for clarity, following the Einstein summation convention
and distinguishing between covariant (subscript) and contravariant (superscript) components.
Current configuration indices are written in lower case Latin, reference configuration indices in
upper case Latin, and intermediate configuration indices are written using Greek symbols. Jux-
taposition implies summation over two repeated adjacent indices (e.g., ðABÞ�ba ¼ AacBcb). The dot
(scalar) product of vectors is represented by the symbol ‘‘Æ’’ (e.g., a � b ¼ aagabbb, with gab com-
ponents of the metric tensor). Angled brackets denote a dual (scalar) product (e.g., for second-
rank tensors, hA;Bi ¼ trðABÞ ¼ AabBba, and for contra covector pairs, ha; bi ¼ aaba). The colon
denotes contraction over repeated pairs of indices (e.g., A : B ¼ trðATBÞ ¼ AabBab and
C : E ¼ CabcdEcd). The symbol ‘‘�’’ represents the tensor (outer) product (e.g., ða� bÞab ¼ aabb).
Superposed )1, T, and ‘‘Æ’’ denote inverse, transpose, and material time derivative operations,
respectively. Additional notation is clarified as needed later in the text.
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2. Multiscale kinematics

A fundamental difference between the model developed in the present work and the numerous
strain gradient approaches already cited is our usage of rigorous volume averaging procedures to
characterize the kinematics of elasto(visco)plastic deformation. Continuum elements (i.e., do-
mains for volume integration) representing a deforming crystal or region within are shown in Fig.
1. The symbols vref , ~vvint, and vcur denote volume elements in reference, intermediate, and current
configurations. Dimensions of vref are assumed to adhere to
Fig. 1

media
a0 � ‘ref 6 LG; ð1Þ
with a0 and LG the lattice parameter and average grain diameter, respectively, and with
‘ref �

ffiffiffiffiffiffiffi
vref3

p
. We also frequently invoke the following notation for configurations at multiple length

scales: vref � bref � Bref , ~vvint � ~bbint � eBBint, and vcur � bcur � Bcur, where global reference, interme-
diate, and current configurations of the entire macroscopic body are labeled Bref , eBBint, and Bcur. All
configurations will be described in more detail later in the text. Local, scalar ‘‘differential’’ volume
elements within reference, intermediate, and current configurations are labeled dvref , d~vvint, and
dvcur, respectively. Differential elements are required to be smaller than their associated volume
elements, but not necessarily infinitesimal in size.

The motion of points of the body from the reference to current configuration is written
xa ¼ uaðXA; tÞ ða;A ¼ 1; 2; 3Þ; ð2Þ
where xa, XA, and t denote, respectively, current configuration coordinates, reference configura-
tion coordinates, and time. The local motion ua is assumed to be continuously differentiable
within vcur. Local intermediate configuration coordinates are also assumed to be continuous within
~vv. These are denoted by ~xxa ¼ ~xxaðXA; tÞða ¼ 1; 2; 3Þ. Further remarks on the availability of con-
tinuous, single-valued coordinates ~xxa follow later.

Basis vectors in each configuration are labeled as
. Configurations, differential volumes, and coordinate systems for crystal volume element: (a) reference, (b) inter-

te, and (c) current.
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GA � o

oXA
; ~gga �

o

o~xxa
; ga �

o

oxa
: ð3Þ
Basis covectors (i.e., dual vectors) are introduced as
GA � dXA; ~gga � d~xxa; ga � dxa; ð4Þ
satisfying
hGA;GBi ¼ dAB; h~gga; ~ggbi ¼ dab; hga; gbi ¼ dab: ð5Þ
Metric tensors are introduced on each configuration, obeying the relations
GAB ¼ GA �GB; ~ggab ¼ ~gga � ~ggb; gab ¼ ga � gb: ð6Þ
The notation G � detG, ~gg � det ~gg, and g � det g denotes determinants of metric tensors given in
(6). Since we often use volume averaging operations over the crystal element to define certain
tensorial quantities, we restrict the basis vectors (3), basis covectors (4), and metric tensors (6) to
be constant, but not necessarily Cartesian, within each element (i.e., vref , ~vvint, and vcur) in each
configuration, such that covariant and partial differentiation are equivalent operations. However,
these variables are permitted to vary from volume element to volume element (if curvilinear
coordinates are useful), and also from configuration to configuration.

The configurations of the crystalline volume element shown in Fig. 1 are now defined in turn.
The reference configuration volume vref consists of the crystalline lattice as it existed prior to
application of external forces (i.e., at t ¼ 0), such that it is free of traction along the external
boundary sref . It may or may not contain dislocations, internal residual elastic lattice strains, or
residual plastic deformation. The current configuration volume element, vcur, is the elastoplasti-
cally-deformed crystal material, with possibly non-vanishing traction vector t per unit reference
area applied on external boundary scur.

The local deformation gradient f for material points with local coordinates XA within the
volume element is defined as the tangent mapping
f � TuX ¼ oua

oXA
ga �GA: ð7Þ
The volume-averaged deformation gradient F for the crystal element is then defined by the motion
of its external boundary, which is equivalent to the volume-averaged local deformation gradient
upon invocation of Gauss�s theorem [61]:
F a
�A � 1

vref

Z
sref

xaðdsrefÞA ¼ 1

vref

Z
sref

oxa

oXA
dvref ¼

1

vref

Z
sref

f a
�Advref : ð8Þ
In Eq. (8), ðdsrefÞA � ðnrefÞAdsref is an oriented differential surface element of sref (Fig. 1), with nref
a unit covariant vector normal to sref .



Fig. 2. Configurations for crystal volume element.
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An average elastic stretch tensor Ve is associated with the average external stress applied to scur.
The intermediate configuration �bbint (Fig. 2) of the crystal element reached upon hypothetical
instantaneous elastic unloading from the current configuration via the inverse of the elastic stretch
Ve�1 corresponds to null traction conditions on the external boundary of the crystal volume el-
ement �vvint (i.e., the traction �ttint ¼ 0 along �ssint), as shown in Fig. 2. The left elastic stretch tensor Ve

is determined explicitly from
Ve ¼
Z
sref

x

�
� dsref

� Z
sref

�xx

�
� dsref

��1

; ð9Þ
where �xx are the local coordinates of the external boundary of the element corresponding to
traction-free intermediate configuration �bbint. Configuration �bbint arises from instantaneous removal
of traction along the boundary of �vvint, constrained in such a way that the global rotation of the
volume element, Re�1, does not occur upon stress relaxation. Upon unloading, plastic rear-
rangements are idealized as rate independent and inertial effects are neglected.

The total ‘‘elastic’’ rotation tensor Re is determined from the solution of the following integro-
differential equation for the elastic spin and associated initial conditions:
_RReRe�1 ¼ 1

vref

Z
vref

_rrere�1 dvref ; Reðt ¼ 0Þ ¼ reðt ¼ 0Þ ¼ 1; ð10Þ
where 1 is the identity map and re is the local elastic and rigid body rotation exhibited by dvref as
it is deformed to its current representation dvcur. Note that ReT ¼ Re�1 follows from (10) and
reT ¼ re�1, since volume averaging preserves the anti-symmetric property of the spin.

The intermediate configuration ~bbint is defined by the net unloading procedure Fe�1 ¼ ReTVe�1,
i.e. unloading by the external forces and subsequent rotation by the inverse (i.e., transpose) of the
average lattice rotation. After this unloading procedure, local coordinates ~xxa describe the positions
of particles within the volume element ~vvint. The local residual deformation gradient ~ff is the tangent
mapping
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~ff � T ~uuX ¼ o~uua

oXA
~gga �GA; ð11Þ
with ~xxa ¼ ~uuaðxaðXA; tÞ; tÞ the motion for differential volume elements between bref and ~bbint. The
volume-averaged residual deformation gradient eFF for the crystal element is deduced from the
intermediate configuration coordinates of its external boundary, and is equivalent to the volume-
averaged residual local deformation gradient upon invocation of Gauss�s theorem (compare with
(8))
eFF a
�A � 1

vref

Z
sref

~xxaðdsrefÞA ¼ 1

vref

Z
sref

o~xxa

oXA
dvref ¼

1

vref

Z
sref

~ff a
�Advref : ð12Þ
We now make two additional assumptions regarding the kinematics of single crystalline elas-
toplasticity on a ‘‘pointwise’’ basis, for each differential volume element [62]
f ¼ fefp; ~ff ¼ ~ffe~ffp: ð13Þ
In Eq. (13)1, f
e ¼ vere is the total lattice stretch ðveÞ and rotation ðreÞ for a differential volume

element deformed to the current configuration, and fp is the remaining (plastic) deformation
gradient attributed to the history of motion of dislocations. In Eq. (13)2, ~ff

e embodies the residual
elastic lattice stretch and rotation for a differential volume element contained within the externally
unloaded element ~vvint, and ~ffp is the residual plastic deformation gradient arising from dislocation
motion. In order to illustrate (13), we label differential volume elements as dvref � vref , d~vvint � ~vvint,
and dvcur � vcur in Fig. 3 with differential elements visually enlarged relative to their surrounding
crystal volume elements for clarity. The local deformation gradients of (13) then act as mappings
between tangent spaces of local ‘‘differential configurations’’:
f : T ðdvrefÞ ! T ðdvcurÞ; fp : T ðdvrefÞ ! T ðdvpÞ; fe : T ðdvpÞ ! T ðdvcurÞ;
~ff : T ðdvrefÞ ! T ðd~vvintÞ; ~ffp : T ðdvrefÞ ! T ðd~vvpÞ; ~ffe : T ðd~vvpÞ ! T ðd~vvintÞ;

ð14Þ
Fig. 3. Tangent mappings and volume elements at multiple length scales.
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Notice that of the six tangent mappings in (14), only f and ~ff are necessarily compatible defor-
mation gradient fields, in agreement with definitions (7) and (11).

The total plastic deformation gradient F
p
for the volume element emerges from the following

integro-differential equation written in terms of the plastic velocity gradient:
_FF
p
F
p�1 � 1

vref

Z
vref

_ffpfp�1 dvref ; ð15Þ
with initial conditions F
pðt ¼ 0Þ ¼ fpðt ¼ 0Þ ¼ 1 if a perfect reference lattice is assumed. Notice

that if the local plastic flow is isochoric, i.e. trð_ffpfp�1Þ ¼ 0, then the volume-averaged plastic flow
of (15) is volume-preserving as well, i.e. trð _FFp

F
p�1Þ ¼ 0.

Next we assume a three-term multiplicative decomposition for the total deformation F:
F ¼ Fe eFFiF
p|ffl{zffl}eF ¼ FeeFF; ð16Þ
where the net residual deformation gradient eFF enters the decomposition as shown, in accordance
with our previous definitions of Fe and eFF. Combining Eqs. (8), (12), (13)2, and (16) leads to the
definition of eFF i:
eFFi � eFFFp�1 ¼ 1

vref

Z
vref

~ffe~ffpdvref

� �
F
p�1

: ð17Þ
The eFFi (two-point) tensor can be thought of as an indicator of residual elasticity in configuration
~bbint (and corresponding residual stresses and interaction energies). The deformation tensor eFFi

contains both residual elastic ð~ffeÞ and plastic ð~ffp;FpÞ contributions. It is clear from Eq. (17)2 thateFF i ! 1 as ~ffe ! 1 and ~ffp ! F
p
, as would be the case for homogeneous deformation of the entire

crystalline element, such that external unloading by Ve�1 relieves all local internal stresses and
plastic rearrangements do not occur upon instantaneous unloading. On the other hand, if the
elastoplastic deformation fields are heterogeneous throughout the volume element, eFFi and com-
mensurate residual stresses may not vanish. Such is the case when cellular or laminar dislocation
substructures misoriented from one other by finite lattice rotations (embodied here locally by the
orthogonal part ~rre of ~ffe) evolve and refine during large strain deformations in FCC metals at room
temperatures [43,44]. When the volume element encompasses an entire single crystal (‘ref ¼ LG in
Eq. (1)), we thus conclude that eFFi represents the contribution of grain subdivision processes to the
total deformation gradient F for the crystal, as originally proposed by Butler and McDowell [50].
Additionally, if heterogeneity of local deformation and stresses due to elastoplastic incompati-
bility (e.g., increased slip system activity and stress concentrations) are intensified in the vicinity of
misoriented grain and subgrain boundaries (cf. experimental and numerical results in [62]), then
one would expect the largest contributions to eFFi to come from these regions.

The deformation tensor eFFi represents in an average sense the incompatibility of the local mi-
croelastic deformation fe�1 within the volume element. If the local elastic unloading fe�1 is uniform
(and hence, compatible) throughout vcur, then fe ¼ Fe, ~ffe ¼ 1, and eFF ¼ ~ff ¼ F

p ¼ ~ffp ¼ fp, such thateFF i ¼ 1 (Fig. 3). However, eFFi tells us nothing about the compatibility, or lack thereof, of the
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average recoverable elastic deformation Fe�1 from volume element to volume element. If we re-
gard each vref as an entire single crystal, then the incompatibility of Fe�1 measures the inter-
granular incompatibility between grains, while if we regard each vref as a subgrain, then the
incompatibility of Fe�1 is an intragranular measure. By incompatibility of Fe�1 we mean lack of
continuous, single-valued coordinates ~xxa spanning the union of i local intermediate configuration
volume elements eVVint � [~vvðiÞint. Thus, while the ~xxa are assumed to be available and differentiable
within each local volume element ~vvðiÞint, they may not be so in the global configuration eBB int � eVVint. If
the ~xxa are multi-valued or discontinuous in the global configuration, they are typically called
anholonomic coordinates [63].

We now appeal to the continuum theories of continuously distributed dislocations [64–66]
to characterize the incompatibility of global configuration eBBint (i.e., the anholonomicity or lack
of integrability of Fe�1). The coefficients C

a
bc of the ‘‘crystal connection’’ (cf. [31,67]) acquire

the following form when referred to the current configuration:
C
a
bc ¼ F ea

�a
oF e�1a

oxb
¼ F ea

�a F
e�1a

�c;b ¼ �F e�1a

�c F ea

�a;b; ð18Þ
with the subscripted comma denoting partial differentiation with respect to spatial coordinates as
indicated. In (18) we require Fe�1 to be spatially differentiable to first-order; thus, for the present
discussion, local misorientations across grain and subgrain boundaries (i.e., between volume
elements vcur) are envisioned as steep gradients of lattice rotation, as opposed to actual discon-
tinuities in the lattice arrangement. The torsion of the connection C

a
bc is written
�tt ¼ �2F ea

�a F
e�1a

�½b;c� ga � gb � gc ¼ �2F ea

�a F
e�1a

�½b j c�ga � gb � gc; ð19Þ
where we have replaced partial differentiation (subscripted comma) with partial covariant dif-
ferentiation with respect to the Levi-Civita connection on Bcur whose Christoffel symbols stem
from the components of the metric gab of Eq. (6)3 and thus are symmetric in covariant indices. We
use the notation of vertical bars for such covariant differentiation. Additionally, the bracketed
indices are anti-symmetrized according to 2A½ab� ¼ Aab � Aba.

We now relate the torsion tensor �tt of Eq. (19) to the anholonomicity of the inverse elastic
deformation gradient field Fe�1. The incompatibility of regions within global configuration eBBint is
associated with the net Burgers vector eBB, defined in terms of the closure failure of the line integral
of d~xx � Fe�1 dx over a closed loop ~cc in eBBint [65,66]
eBB � �
I
~cc
d~xx ¼ �

I
c
Fe�1 dx: ð20Þ
Applying Stokes� theorem (cf. [4]), we express Eq. (20) as
�
I
c
F e�1a

�a dxa ¼
Z
a
F e�1a

�½a j b� dx
a ^ dxb ¼

Z
a
eabcF e�1a

�a;b ncda; ð21Þ
where dxa ^ dxb ¼ eabcncda ¼ ffiffiffi
g�1

p
eabcncda is the differential area two-form corresponding to ori-

ented area element nda bounded by curve c (Fig. 4), which in turn is the current configuration



Fig. 4. Burgers circuit in current configuration.
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image of Burgers circuit ~cc. The wedge product is denoted by ^, and components of the contra-
variant permutation tensor (i.e., alternator tensor) in the current configuration are denoted by
eabc ¼ ð ffiffiffi

g�1
p Þeabc, with eabc the standard permutation symbols.

The incompatibility is expressed in terms of the torsion of the crystal connection by combining
(18)–(21)1, i.e.
eBBa ¼ � 1

2

Z
a
F e�1a

�c �ttcab dx
a ^ dxb: ð22Þ
By defining the operator
curlð�Þ � ðoð�Þ=oxÞ : e; ð23Þ
we may write for (21)2
eBB ¼
Z
a
curlðFe�1Þ � nda ¼

Z
a
Ae � nda; ð24Þ
where Ae � curlðFe�1Þ and the vector nda ¼ ðnadaÞga. Invoking Nanson�s formula ~nnd~aa ¼
J e�1n � Fe da (cf. [35]), we can transform (24) to an area integral over an intermediate configuration
region ~aa
eBB ¼
Z
~aa

~nn � J eFe�1AeT|fflfflfflfflfflffl{zfflfflfflfflfflffl}eAeAe

d~aa ¼
Z
~aa

~nn � ~AAed~aa; ð25Þ
where the dot product in the integrand of (25) denotes contraction of the covariant index of ~nn with
the contravariant index of Fe�1. Note that ~AAe only measures GNDs and does not account for
SSDs (e.g., closed dislocation loops) within vref [68,69].

Discussion regarding the length scales inherent in the line integral (20) is now in order. Two
distinct length scales are included in the integral (20) and are intimately related. One is the choice
of size of ~cc: we let Dð~ccÞ denote the diameter of a circle equivalent to ~cc. The other is the choice of
‘ref , which defines the size of the volume element vref ¼ ‘3ref , and thus ~vvint, and implicitly affects the
definition of the average elastic deformation gradient for the element, Fe. Eq. (20) is really valid
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only for Dð~ccÞP lref , if we take ‘ref to be a characteristic diameter of the volume element ~vvint
considered. Under this condition, Fe and its gradient are defined in regions within circuit ~cc. If the
converse is true, such that Dð~ccÞ < ‘ref , we need to consider the incompatibility of the inverse
microelastic deformation within the volume element, fe�1, instead since Fe�1 is not defined within
the volume element. Repeating the derivation leading up to (24) for the microelastic deformation
fe�1, we arrive at an expression for a local Burgers vector ~bbe
~bbe � �
I
c
fe�1dx ¼

Z
a
curlðfe�1Þ � nda: ð26Þ
Notice that ~bbe ¼ ~bbe
�aa
~gg�aa 2 T ðdvpÞ resides in a different tangent space than the vector eBB of (25). We

use barred Greek indices to denote components in this space, which arises from the local plastic
deformation fp, as shown in Fig. 3. Under certain conditions we can further characterize (26) in
terms of the spatial gradient of the inverse of the residual elastic deformation gradient ~ffe. Since
both d~vvint and dvcur inhabit local volume elements deformed in a compatible fashion, we can define
a local compatible tangent mapping between them: �ffc�1 � o~xx

ox
: T ðdvcurÞ ! T ðd~vvintÞ. If no additional

local plastic deformation occurs upon external unloading of the volume element, in the process
symbolized by Fe�1, then microscopically we have fp ¼ ~ffp and dvp ¼ d~vvp, as shown in Fig. 5.
Furthermore, we may write
fe ¼ �ffc~ffe; ð27Þ
thereby decomposing the total microelastic deformation into a residual part ~ffe and a compatible
part �ffc due to the applied stress [70]. Substituting (27) into (26) and invoking the compatibility
conditions �ff c�1b

�½a;b� ¼ 0 then gives
~bbe�aa ¼
Z
a
ecabð~ff e�1�aa

�b;b
�ff c�1b
�a þ ~ff e�1�aa

�b
�ff c�1b
�a;b Þncda ¼

Z
a
ecabð~ff e�1�aa

�b;b
�ff c�1b
:a Þncda; ð28Þ
Fig. 5. Tangent mappings and volume elements when fp ¼ ~ffp.
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demonstrating that ~bbe of Eq. (26), representing the anholonomicity of the local elastic deforma-
tion gradient, depends only upon the spatial gradient of the (inverse of the) residual elastic lattice
deformation map ~ffe. and not higher order gradients of the locally compatible and recoverable
elastic lattice deformation field �ffc.
3. Multiscale balance laws

Neglecting body forces, let the crystal element be subjected to arbitrary but self-equilibrating
surface traction t, measured per unit area in the reference configuration, with corresponding
outward unit normal covector nref (Fig. 2). Let sAa represent the contravariant components of the
local two-point nominal stress tensor (the transpose of the first Piola–Kirchhoff stress tensor). The
traditional (non-polar) local balances of linear and angular momentum, respectively, are written
for quasi-static conditions as
sAajA ¼ 0; f a
�AS

Ab ¼ SAaf b
�A; ð29Þ
with nrefA
SAa ¼ ta on Sref , and with the vertical bar denoting covariant differentiation with respect

to the symmetric Levi–Civita connection on bref . Notice that Eq. (29) are applicable locally, for
points (i.e., differential elements) within the crystal element. We next define the average nominal
stress tensor for the volume element as (cf. [71])
S � 1

vref

Z
vref

sdvref ¼
1

vref

Z
sref

X� tdsref ; ð30Þ
where Gauss�s theorem has been used for Eq. (30)2, along with the assumptions of quasi-static
conditions, Eq. (29)1, and stress continuity within the volume element. The definition of the
contravariant Cauchy stress R then follows as
Rab � J�1F a
�AS

Ab; ð31Þ
with J � detF
ffiffiffiffiffiffiffiffiffi
g=G

p
. The macroscopic rate of the deformation gradient, _FF, is given by
_FF � 1

vref

Z
vref

_ff dvref ¼
d

dt
1

vref

Z
vref

f dvref

� �
¼ 1

vref

Z
sref

_xx� dsref ; ð32Þ
where _xxðX; tÞ ¼ d
dt ðxagaÞ is a compatible (material) surface velocity. Consider the following

equality [72]:
1

vref

Z
vref

_ffsdvref � _FFS ¼ 1

vref

Z
sref

ð _xx� _FFXÞ � ðnrefðs� SÞÞdsref : ð33Þ
The right-hand side of Eq. (33) is zero for linear displacement, constant traction, and certain
periodic boundary conditions specified with respect to the reference configuration. Assuming
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henceforward such boundary conditions apply as representative for our crystal element, the
volume-averaged stress work rate per unit volume is found as
1

vref

Z
sref

tagab _xxb dsref ¼
1

vref

Z
vref

SAagab _ff b
�Advref ¼ SA

�a
_FF a
�A; ð34Þ
where we have used Gauss�s theorem in (34)1.
The balance of energy for a purely mechanical process, considering the localized form of (34)

in the absence of heat flux due to conduction or internal heat supply, is written as
_uu0 ¼ SA
�a
_ff a
�A; ð35Þ
with u0 the local internal energy per unit volume in the reference configuration. The corresponding
averaged energy balance then follows from Eq. (34)2 and (35) as
_UU0 ¼ SA
�a
_FF a
�A; ð36Þ
where U0 � ðvrefÞ�1 R
vref

u0dvref is the average internal energy per unit reference configuration
volume. Notice that Eqs. (35) and (36) are constitutive assumptions, prohibiting conjugate mi-
crostresses to second-order gradients of deformation from performing mechanical work on the
external boundaries of dvref and vref , respectively. These rather strong assumptions are in agree-
ment with previous treatments by Teodosiu [3], Steinmann [32], Acharya and Bassani [33,73],
Menzel and Steinmann [9], Bammann [34], Bassani [74], and Regueiro et al. [39]. On the other
hand, they are contradictory to the models of Teodosiu [1], Dillon and Kratochvil [5], Naghdi
and Srinivasa [38,28], Le and Stumpf [30,31], Shizawa and Zbib [16,17], and Gurtin [13,36].

Introducing g0 as the average specific entropy per unit reference volume, the Clausius–Duhem
inequality is written
_gg0 P 0; ð37Þ
again in the absence of heat flux due to conduction or internal heat supply. The average Helm-
holtz free energy per unit volume in the reference configuration, w0, is then defined by
w0 � U0 � g0h; ð38Þ
with h the absolute temperature. Substituting Eqs. (36) and (38) into the Clausius–Duhem in-
equality (37) and assuming stationary temperature then yields a reduced form for the entropy
inequality:
SA
�a
_FF a
�A P _ww0: ð39Þ
The remaining balance laws at the level of the volume element are now presented:
q0 ¼ qJ ; SAa
jA ¼ 0; F a

�AS
Ab ¼ SAaF b

�A: ð40Þ
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Eq. (40)1 provides the usual relationship between current, q, and reference, q0, average mass
densities. Eq. (40)2 and (40)3 follow from volume averaging the microscopic balance laws in Eq.
(29) and by assuming that boundary conditions imposed on the crystal volume element are such
that the right-hand side of Eq. (33) is zero throughout the deformation process. The last of (40)
leads to symmetry of the Cauchy stress R, as defined in Eq. (31).

Notice that inequality (39) is written in terms of two-point tensors S and F and the free energy
per unit reference volume w0. We shall later find it useful to express (39) in terms of quantities with
all components referred to intermediate configuration ~bbint (i.e., the relaxed intermediate config-
uration of elastoplasticity), which we view as the most convenient configuration for deducing
thermodynamic restrictions and posing constitutive assumptions (see also [16,17,39]). Expression
of (39) in the intermediate configuration is achieved here by first mapping to the current
configuration, then pulling back by the two-point elastic deformation gradient Fe. From (31) we
have
SA
�a
_FF a
�A ¼ JRab gbc _FF c

�AF
�1
�a A|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

�Lba

¼ JRabLba; ð41Þ
with L the spatial velocity gradient. Substituting into (39) and multiplying by the inverse of the

Jacobian invariant eJJ � det eFF ffiffiffiffiffiffiffiffiffi
~gg=G

p
> 0 then gives the Clausius–Duhem inequality in the current

configuration, i.e.
ðRabLba þ w0
_JJ�1ÞP _ww; ð42Þ
where the free energy per unit current volume is w � J�1w0. From the symmetry of R and g�1, and
using the standard identities

_J�1JJ�1J ¼ 0 and _JJ ¼ JgabLba, Eq. (42) can be simplified to read
hðR� wg�1Þ;LvðgÞiP 2 _ww; ð43Þ
with Lv the Lie derivative with respect to the spatial velocity field v ¼ _xx � u�1, and with
hA;Bi ¼ trðABÞ the dual product defined for second-rank tensors A and B. We next define the
velocity gradient eLL referred to intermediate configuration ~bbint as
eLLa
�b � F e�1a

�a La
�bF

eb

�b ð44Þ
and we define the mixed-variant elastic second Piola–Kirchhoff stress eSS and the Mandel stress [75]fMM as
eSS a
�b � J eF e�1a

�a RacgcbF e�Tb

�b ; eMM a
�b � J eF eTa

�a RacgcbF e�Tb

�b ¼ eCC ea

�v
eSS v
�b; ð45Þ
where eCC ea
�v � ~ggabF ea

�v gabF
eb
�b and J e � detFe

ffiffiffiffiffiffiffiffi
g=~gg

p
. Then from relations (39), (41) and (45)2, we can

obtain
eJJ eLLa
�b
eMM Tb

�a P _ww0: ð46Þ
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Multiplying (46) by eJJ �1 > 0 and using the relation
_eJJ �1eJJ �1 ¼ �eJJ �2 _eJJeJJ ¼ �eJJ �1 _eFFeFF a

�A
eFF �1A

�a , along witheww � eJJ �1w0, then gives
eLLa
�b
eMM Tb

�a � eww _eFFeFF a

�A
eFF �1A

�a P _ewweww; ð47Þ
which is the reduced entropy inequality mapped to configuration ~bbint, with energetic quantities
defined on a per-unit-volume basis with respect to local element volume ~vvint.
4. Crystal plasticity model

Hereafter we more fully develop a continuum crystal plasticity model, focusing on a formu-
lation couched at a single length scale ‘ref rather than one phrased in terms of volume averages.
This is necessary for typical numerical implementations, wherein each volume element vref cor-
responds to the local region about an integration point in a finite element simulation, for example.
The microscopic deformation gradients f, ~ff, fe, fp, ~ffe, ~ffp, and fc were introduced in Section 2 for
illustrative purposes and are not calculated explicitly in this model. The same can be said for the
microscopic kinetic variables––such as t, s and u0, for example––of Section 3. Instead, we consider
here the evolution of the average deformation gradients for the crystalline volume element (e.g., F,
Fe, eFFi, and F

p
), the average stresses (e.g., S and R), and the average energies (e.g., U0 and w0). Since

the microscopic deformations and local lattice rearrangements within the volume element are no
longer explicitly tracked, we are unable to invoke Eq. (9) to determine Ve, Eq. (10) for Re, Eq. (15)

for F
p
, Eq. (17) for eFFi, or Eq. (26) to calculate the local incompatibility ~bbe within microscopic

subregions of the crystal element. Likewise, we are unable to calculate local residual stress fields
and elastic energies associated with ~ffe in the model forthcoming in Section 4. Instead, we must rely
upon additional constitutive assumptions and corresponding balance relations to ready our model
for implementation––these are considered in detail in what follows. Of course, the constitutive
assumptions we make hereafter are motivated by the physically-based, multiscale averaging
treatment of Sections 2 and 3.

4.1. Kinematics, balance laws, and thermodynamics: summary

The fundamental thermomechanical relations already derived in Sections 2 and 3 and applied
now to a ‘‘single-scale’’ crystal plasticity formulation are restated here for clarity and ease of
reference.

Deformation gradient:
F ¼ ox

oX
¼ Fe eFFiF

p|ffl{zffl}eF ¼ VeRe|ffl{zffl}
Fe

eVVi eRR i|ffl{zffl}eFi F
p
: ð48Þ
Dislocation density tensor (GNDs):
~AAe ¼ J eFe�1ðcurlFe�1ÞT: ð49Þ
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Mechanical stresses:
fMM ¼ ~gg�1 eCCeeSS ¼ JeFeTRgFe�T ¼ eJJ �1FeTFSgFe�T: ð50Þ
Mass conservation:
q0 ¼ qJ : ð51Þ
Balance of linear momentum (quasi-static):
DivðSÞ ¼ 0: ð52Þ
Balance of angular momentum (quasi-static, intermediate configuration):
eSS � eSST ¼ 0: ð53Þ
Balance of energy (mechanical case, intermediate configuration):
hfMMT;Fe�1 _FFF�1Fe|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}eL i ¼ eJJ �1 _UU0: ð54Þ
Entropy inequality (mechanical case, intermediate configuration):
hfMMT; eLLi � heww~11; _eFFeFFeFF�1iP _ewweww: ð55Þ
4.2. Free energy and consequences of the dissipation inequality

We make the following general assumption regarding the dependency of the Helmholtz free
energy function for the crystal volume element, referred to relaxed intermediate configuration ~bbint
and neglecting temperature effects:
eww ¼ ewwðeCCe; eVVi; ~AAe; ~eeSS; ~ggÞ ¼ ewwðeCC e
ab;
eVV ia

�b ;
eAAeab ; ~eeSS; ~ggabÞ: ð56Þ
The covariant elastic strain tensor eCC e
ab � F ea

�a gabF
eb
�b is included to model the change in average

energy with a change in external loads, a standard assumption in finite crystalline elastoplasticity
theories (cf. [76]). The left stretch tensor derived from eFFi, denoted by eVVi, is included to reflect the
contribution to the free energy from residual microelasticity within the volume element, and is
non-negligible when the deformation within the volume element is heterogeneous (e.g., during
grain subdivision). Kratochvil [77] and Lion [78] made similar constitutive assumptions. The
elastic energy due to the average elastic curvature in the volume element attributed to GNDs is
reflected by the inclusion of ~AAe, a particular assumption also suggested explicitly by Bammann
[34], Gurtin [36], and Regueiro et al. [39]. Since the GND density tensor does not include a



J.D. Clayton et al. / International Journal of Engineering Science 42 (2004) 427–457 443
measure of the total length of all dislocation lines (e.g., SSDs consisting of closed dislocation
loops and dislocation lines of opposing signs), the scalar parameter ~eeSS � ~bb

ffiffiffiffiffiffiffi
~qqSS

p
is included to

model the net contribution of the elastic self-energy of the SSDs to the total free energy (cf.
[79,80]). The scalar norm of the Burgers vector (e.g., the lattice parameter) is denoted by ~bb, while
the line length of SSDs per unit intermediate configuration volume is written ~qqSS. We regard ~eeSS as
a local residual lattice strain measure due to the presence of SSDs [34].

It is emphasized that all independent variables in the free energy function are ‘‘elastic’’ vari-
ables, in contradiction to works of Naghdi and Srinivasa [38,28], Gurtin [13], and Svendsen [37],
among others, who include a dependency upon the plastic deformation gradient and/or higher
gradients of plastic deformation. We treat the plastic deformation gradient eFFp as a continuum
idealization of the rigid sliding of portions of the lattice due to relative motion of elastic blocks of
material contained between slip planes. Such motions clearly do not alter the energetic properties
of material within the blocks, and therefore should not influence the Helmholtz free energy.
Reasoning behind inclusion of the metric ~gg will be explained later.

Notice that each of the constitutive variables in (56) is invariant with respect to superposed
rigid body motions in the current configuration: x ! Qxþ c, with Q 2 SO3 a rigid body rotation
matrix and c a constant translation vector:
Fe ! QFe ) eCCe ! eCCe; eFFi ! eFFi ) eVV i ! eVV i;

~AAe ¼ J eFe�1ðcurlFe�1ÞT ! J eðdetQÞFe�1QTðcurlðFe�1QTÞÞT ¼ ~AAe;

~qqSS ! ~qqSS ) ~eeSS ! ~eeSS; ~gg ! ~gg:

ð57Þ
Even though eFFi is unaffected by rigid transformations of the current configuration [77], we choose
not to include the rotational part of eFFi, denoted by eRR i, in the free energy function because rigid-
body rotations of the volume element in the unloaded configuration ~bbint do not influence the
stored elastic energy.

We define the conjugate stresses to the independent state variables included in (56):
eSSe � oeww
oeCCe

; eSSi � oeww
oeVVi

; eSSGN � oeww
o~AAe

; eSSSS � oeww
o~eeSS

; eSSg � oeww
o~gg

: ð58Þ
Notice that eSSGN is a couple stress, with units of force/length, while the remaining stress measures,eSSe, eSS i, eSSSS, and eSSg possess the standard stress dimensions of force/length2. Expanding
_ewweww in (55)

using the definitions of (58) gives
eLLa
�b
eMM Tb

�a � eww _eFFeFF a

�A
eFF �1A

�a P eSS eab _eCCeCC e

ab þ eSS i	
b

�a
_eVVeVV ia

�b þ eSSGN
ab

_~AA~AA
eab þ eSSSS _~ee~eeSS þ eSS gab _~gg~ggab; ð59Þ
where the dual map [81,82] is denoted by ð Þ	 and satisfies ðAa
�bÞ

	 ¼ A	�a
b . From the three-term

multiplicative decomposition of the deformation gradient, F ¼ FeeFF iF
p
, of Eqs. (16) and (48), the

velocity gradient in the intermediate configuration, eLL, can be partitioned as
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eLL � Fe�1 _FFF�1|ffl{zffl}
L

Fe ¼ Fe�1 _FFe|fflfflffl{zfflfflffl}eLe

þ _eFFeFFieFF i�1|fflfflffl{zfflfflffl}eLi

þ eFFi _FF
p
F
p�1eFF i�1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}eLp

: ð60Þ
Further algebraic manipulations give
heLL;fMMTi ¼ eSS~gg�1;
1

2

_eCCeCCe
� �

þ hfMMT; eLL i þ eLLpi; _eFFeFFieFFi�1|fflfflffl{zfflfflffl}eLi

¼ _eVVeVV i eVVi�1 þ eVVi _eRReRRi eRRiT|fflffl{zfflffl}eWi

eVVi�1; ð61Þ
where the spin fWWi is skew via ~ggab eWW ib

�v ¼ �~ggvb eWW ib
�a . Using Eqs. (60) and (61) in inequality (59) then

results in
1

2
eSS a
�v~gg

�1vb
�

� eSS eab
�
_eCCeCC e

ab þ ðð eMM Tb

�v � ewwdb�vÞeVV i�1v

�a � eSS i	b
�a Þ _eVVeVV ia

�b � eSSgab _~gg~ggab

þ ðeVV ib

�v
eMM Tv

�c
eVV i�1c

�a Þ eWW ia

�b � eSSGN
ab

_~AA~AA
eab � eSSSS _~ee~eeSS þ ð eMM Tb

�a � ewwdb�aÞ~LLpa

�b P 0: ð62Þ
Assuming that (62) must hold for independent specification of the elastic strain rate and the other
rate variables [83,84] we arrive at standard relationships between the (mechanical) elastic stresseseSS, R, S, and T, and the lattice stress eSSe conjugate to eCCe
2eSSe ¼ 2
oeww
oeCCe

¼ eSS~gg�1 ¼ J eFe�1RFe�	 ¼ eJJ �1eFFSFe�	 ¼ eJJ �1Fe�1TeFF	; ð63Þ
where T � ST is the contravariant first Piola–Kirchhoff stress tensor, and the final equality follows
from (40)3. More familiar and compact constitutive equations for the Cauchy stress and first
Piola–Kirchhoff stress are then derived readily with the chain rule of differentiation
Rab ¼ 2J e�1 oeww
oeCC e

ab

F ea

�a F
eb

�b|fflffl{zfflffl}
¼oeCC e

ab=ogab

¼ 2Je�1 oeww
ogab


 2
ow
ogab

; ð64Þ
T aA ¼ 2eJJ F �1A

�b F eb

�a
oeww
oeCC e

ab

F ea

�b ¼ eJJ eFF �1A

�a
o ~ww
oF ec

�a|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼oeww=oF c

�A

gca ¼ eJJ oeww
oF c

�A
gca 
 ow0

oF c
�A
gca: ð65Þ
The final equality in (64) is rigorous only when oJ e�1=og ¼ 0 (e.g., Cartesian current coordinates),
while the final equality in (65) is ensured only when o~JJ=oF ¼ 0 (e.g., when the total inelastic
deformation is isochoric). We next define (cf. [85])
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ePP � fMMT � eww~11 ¼ J eFe�1 ðRg� w1Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
p

Fe ¼ eJJ �1eFF ðFTTG� w010Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
P

eFF�1 ð66Þ
as the push-forward of the mixed-variant reference configuration Eshelby 1 [86] energy–mo-
mentum tensor P, or equivalently as the pull-back of the current configuration Eshelby stress
tensor p. In Eq. (66), 10, ~11, and 1 denote mixed-variant identity maps on configurations bref , ~bbint,
and bcur, respectively. Upon substituting (63) and (66) into (62) and assuming that _~gg~gg ¼ 0, we arrive
at a reduced form of the dissipation inequality:
hePP eVVi�1 � eSSi	;
_eVVeVVi
þ heVViePP eVVi�1;fWWii � heSSGNT;

_~AAe~AAei � heSSSS; _~ee~eeSSi þ hePP; eDDp þfWWpiP 0: ð67Þ
Notice that both the plastic deformation rate eDDpa

�b � ~ggadð~ggeLLpÞðdbÞ and the plastic spineWW pa

�b � ~ggadð~ggeLLpÞ½db� contribute to the dissipation, as does the spin associated with residual elas-

ticity/subdivision fWWi. Note also the prominent role of the Eshelby stress tensor ePP as a force
conjugate in the plastic dissipation term (see also [85,87]).
4.3. Constitutive model

A more explicit form of the strictly mechanical, intermediate configuration free energy function
(56) is now proposed on physical grounds:
eww ¼ 1

2
heEEe; ðeCCeffðeEEiÞÞ : eEEei þ c1lheEEi; eEEei þ c2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
heEEi; eEEii

q
þ c3lð~eeSSÞ2 þ bGNlh~AAe

#;
~AAe
#i: ð68Þ
The strains eEEe and eEE i follow from the decomposition of the total strain tensor eEE referred to ~bbint:
eEE � 1

2
eFF�TðFTF� 10ÞeFF�1 ¼ eEEe þ eEEi þ eEEp; ð69Þ
where the elastic ðeEEeÞ, heterogeneity ðeEEiÞ, and plastic ðeEEpÞ parts are given by
eEEe � 1

2
ð~gg�1 eCCe � ~11Þ; eEE i � 1

2
ð~11� eVVi�T eVVi�1Þ; eEEp � 1

2
eFFi�Tð~11� F

p�T
F
p�1ÞeFFi�1: ð70Þ
Notice that eEEe and eEEi are functions of eCCe and eVVi, respectively, in agreement with the general form
for the free energy in proposition (56). The mixed-variant GND variable ~AAe

# is defined as
~AAe
# � ~AAe~gg: ð71Þ
shelby [86] in fact used the negative of our P as the referential energy–momentum tensor, with the material

nt of displacement in place of the deformation gradient. We follow here for convenience the definition and sign

ntion of Le and Stumpf [87] and Le et al. [76].
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Components of the fourth-rank effective elastic modulus tensor for the volume element in the
intermediate configuration are denoted by ðeCC effÞa��v�bd�, and l is a characteristic elastic constant for a
perfect reference lattice (e.g., an average reference shear modulus). Finally, c1; c2, and c3 are di-
mensionless scalar constants, and bGN is a (possibly) evolving scalar parameter that will be ad-
dressed more later (Eqs. (72) and (73)), with dimensions of length2. Notice the role of ~gg in defining
the mixed-variant tensors eEEe and ~AAe

#, rendering its inclusion in the general free energy function
(56) a necessity [87].

We now discuss the physical reasoning behind our choice of each term in the specific free energy
function (68). The first term, 1

2
heEEe; ðeCCeffðeEEiÞÞ : eEEei, is reminiscent of the quadratic form seen in

finite linear hyperelasticity, differing only in the sense that the effective elastic modulus tensor for
the volume element, referred here to the intermediate configuration ~bbint, is assumed to depend
explicitly upon eEEi. This assumption is intended to reflect the influence of local microelastic ro-
tations which arise, quite possibly, from grain subdivision and intragranular substructure de-
velopment during plastic deformation (cf. Hughes et al. [43], Butler and McDowell [50]). For
example, for a single crystal consisting of subgrains exhibiting a random distribution of local
misorientations unrestricted in magnitude, the effective moduli will approach those of a random
polycrystal (e.g., elastic isotropy in many metals).

The second term, c1lheEE i; eEEei, accounts for the aforementioned amplification of internal re-
sidual microstress fields (and the corresponding internal elastic energy) at flexing subgrain

boundaries [59,60] with increases in the applied stress. The third term, c2l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
heEEi; eEEii

q
, represents a

portion of the stored energy of cold work attributed to heterogeneous elastoplasticity within the
volume element. The linear dependency of energy upon the effective ‘‘meso-incompatibility’’
strain eEEi is motivated from previous solutions obtained from computational micromechanics [88]
in which low-angle and high-angle grain boundary arrangements were assigned as initial condi-
tions to a deforming polycrystalline aggregate. Since the present model is intended for single
crystals, we presume that data for low-angle grain boundary arrangements from this previous
study are most applicable (Fig. 6(a)), and our form of the free energy term reflects an assumption
of similitude between single crystals and polycrystals with low-angle boundaries. Thus, this term
should be regarded as a rough initial approximation.

The fourth term, bGNlh~AAe
#;

~AAe
#i, represents a quadratic dependency of the free energy upon the

average density tensor of GNDs. Such an assumption is rather standard in gradient finite strain
single- and polycrystalline elastoplasticity theories in the literature (cf. [9,32,34,37,39]), as is the
linear dependence upon the total length of SSDs per unit volume, ~qqSS ¼ ð~eeSS=~bbÞ2 [34,39,37]. Ad-
ditional experiments and/or numerical simulations are clearly needed to determine the parameters
c1, c2, and c3 for a particular material.

We remark that the parameter bGN provides a squared effective ‘‘radius of non-local action’’ in
our model (see also later Eqs. (90) and (93)). As bGN ! 0, the contribution of GNDs to the free
energy function becomes negligible, and the model assumes a local character. We hypothesize that
‘ref ¼

ffiffiffiffiffiffiffi
vref3

p
––the size of the representative crystal volume element (Eq. (1))––should influence the

value of bGN in some way. In other words, the size of the local crystal volume element over which
the average dislocation density tensor ~AAe is calculated should have some effect upon the range of
non-local interactions. For example, if we assume that the strength of non-locality is inversely
related to scale (cf. [24]), then an obvious choice is



Fig. 6. Residual elastic energy versus

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3ÞheEEi; eEEii

q
(a) and evolution of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
heEEi; eEEii=heEEe; eEEei

q
versus applied effective

strain (b).
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bGN ¼ ‘2GN

‘GN

‘ref

� �c4

; ð72Þ
with ‘GN a length parameter that is characteristic for a given material (cf. [39]) and with c4 another
dimensionless material constant. In other words, if we regard ‘GN and c4 as fixed parameters
(constants) for a given material, then the non-local radius will scale with the size of the volume
element according to ‘

�c4=2
ref . Of course, we would now need a more extensive series of tests to

determine the two values ‘GN and c4, rather than just bGN. Interestingly, if we take ‘ref ¼ LG, the
grain size, and c4 ¼ 1, then a Hall–Petch type relation [18,19] for hardening due to GNDs is
acquired via Eq. (72).

Additionally, one may argue that since the radius of non-locality should reflect a characteristic
dimension of the microstructure, such as cellular structure size in ductile single crystals that
subdivide (cf. [7]), then the effective length ‘GN should be an evolving, rather than stationary,
parameter. In our framework, we could easily extend (72) to
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bGN ¼ ‘̂‘2GN

‘̂‘GN

‘ref

 !c4

; ‘̂‘GN ¼ ‘̂‘GNðeVViÞ; ð73Þ
allowing the effective scaling factor ‘̂‘GN to evolve with the heterogeneity parameter (i.e., the grain
subdivision metric) eVVi. If Eq. (73) is invoked, then the presence of ‘̂‘GN in the free energy function
(68) will influence the values of thermodynamic force conjugates calculated via Eqs. (58) con-
tributing to the dissipation inequality (67).

Consider a boundary value problem where F and its rate are prescribed incrementally as a
function of time. In order to characterize completely the state of the material from the kinematic
standpoint of Eq. (48), we need to specify the deformation gradient measures Fe, eFFi, and F

p
. In a

hyperelastic setting (cf. [89,90]), a standard approach is to formulate evolution laws for (time rates
of) F

p
and eFFi, thus leaving Fe to be determined from the product FðeFF iF

pÞ�1
, assuming that the rate

of F and the driving forces for each inelastic deformation measure are known at the beginning
of each time increment. Such is our approach: the requisite evolution equations for F

p
and eFFi are

considered next.
The time rate of average plastic deformation gradient in the single crystal volume element is

assumed to follow from the standard kinematic framework of finite crystal plasticity [80,91–93],
i.e.,
_FF
p ¼

Xn
i¼1

_cci�ssi � �mmi

 !
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

�LLp

F
p
; ð74Þ
where _cci, �ssi, and �mmi are the shearing rate, slip direction (a unit vector), and slip plane normal (a
unit covector) for slip system i, all defined with respect configuration �bbp of Fig. 2. As written in
(74), �LLp � _FF

p
F
p�1

is the mixed-variant average plastic velocity gradient in configuration �bbp. When
the single crystalline lattice is initially heterogeneous in the reference state, or when the lattice
deforms heterogeneously within the volume element, _cci, �ssi, and �mmi are understood to be suitably-
defined spatial averages of their fluctuating local counterparts. In accordance with classical crystal
plasticity theory, the representation of the slip directions and slip plane normals is assumed
identical in each of the unloaded configurations bref and �bbp. The slip direction unit vectors and slip
plane normal covectors are orthogonal in the unloaded configurations (i.e., h�mmi;�ssii ¼ 0), and are
typically given as initial conditions in a boundary value problem. However, their representation
changes in the current configuration as a result of the elastic deformation gradient Fe (cf. [76,93])
ðsiÞa ¼ F ea

�a d
a
�aað�ssiÞ

�aa
; ðmiÞa ¼ F e�	�a

a d�aa
að�mmiÞ�aa: ð75Þ
In Eq. (75), si and mi are push-forwards of their counterparts in �bbp (we have used barred Greek
indices for components in �bbp) and are not necessarily of unit length when the elastic stretch Ve is
significant, although each pair of si and mi does remain orthogonal in configuration bcur, as is
easily verified by direct calculation. These orthogonality relations effectively prohibit dislocation
climb, a non-isochoric process. Two useful consequences arise from kinematic assumption (74)
and the slip plane normal-slip direction orthogonality relations. The first is



J.D. Clayton et al. / International Journal of Engineering Science 42 (2004) 427–457 449
_JJp ¼ Jptrð�LLpÞ ¼
X
i

_ccih�mmi;�ssii ¼ 0; ð76Þ
meaning that the plastic flow is isochoric. The second is a reduced form of the ‘‘purely plastic’’
dissipation in the entropy inequality (67):
hePP; eDDp þfWWpi ¼ heFFi�1ePPeFFi�T|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
P

; �LLpi ¼ hP; �LLpi ¼
X
i

�ppi _cci; ð77Þ
where P is the Eshelby stress tensor mapped to ‘‘plastic’’ configuration �bbp and
�ppi � �PP �aa
�bb ð�ss

iÞ�bbð�mmiÞ�aa ð78Þ
is the projected Eshelby stress on system i. We could equivalently use the pull-back of the
transposed Mandel stress, eFFi�1fMMTeFFi�T , in place of P in (77) and (78) since the plastic flow is
volume-preserving. By assuming a particular flow potential U for the slip rates _cci, we can ensure
that the dissipation in (77) is non-negative, such that the entropy inequality is satisfied auto-
matically when the contributions of eFF i, ~AAe, and ~qqSS to the dissipation are neglected. We conve-
niently prescribe
U ¼
Xn
i¼1

ÛUið�ppi; eFF i; eSSGN; eSSSSÞ ¼ _kk
X
i

�jji

mþ 1

�ppi

�jji

�����
�����
mþ1

; ð79Þ
where each slip potential ÛUi is a scalar function of its arguments. In Eq. (79)2, _kk > 0 (dimensions
of 1=time) and m (dimensionless) are material parameters which we assume are constant on each
slip system, while �jjiðeFFi; eSSGN; eSSSSÞ > 0 are scalar slip resistances (dimensions of force/length2) that
evolve with inelastic deformation. The slip rates are then assumed to adhere to
_cci ¼ oU
o�ppi

¼ oÛUi

o�ppi
¼ _kksgnð�ppiÞ �ppi

�jji

�����
�����
m

ðno sum on iÞ; ð80Þ
a power-law form reminiscent of typical flow rules proposed for classical crystal viscoplasticity
[94], except that the resolved Eshelby stress is used as a conjugate variable to the slip rates in our
theory. Substituting (80) into (77), we find that the purely plastic dissipation is unconditionally
non-negative:
X
i

�ppi _cci ¼ _kk
X
i

�ppisgnð�ppiÞ �ppi

�jji

�����
�����
m

P 0: ð81Þ
Our thermodynamic motivation for choosing the resolved Eshelby stress as a driving force for
viscoplasticity is clear from (67) and (81). Our physical reasoning for selecting the Eshelby stress
stems its relationship to the configurational force on a dislocation [85], as opposed to the usual
resolved Cauchy stress of Schmid�s law [95]. We also cite the work of Le et al. [76] who used
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thermodynamic and physical arguments similar to ours to motivate usage of the Eshelby stress as
a driving force for plastic deformation in a finite strain, rate-independent single crystal plasticity
model.

We propose the following dependency for the positive scalar slip resistances �jji:
�jjiðeFFi; eSSGN; eSSSSÞ ¼ �jjiðJ i�1eFFi	ðeSSGNÞTeFFi|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
�SSGN

;
ffiffiffiffi
J i�1

p eSSSS|fflfflfflffl{zfflfflfflffl}
�SSSS

Þ ¼ �jjið�SSGN; �SSSSÞ; ð82Þ
with �SSGN and �SSSS complete pull-backs of eSSGN and eSSSS to configuration �bbp, and with
J i � det eFFi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ~gg=det �gg

p
> 0 (�gg is now introduced as a local metric on the anholonomic space �bbp).

The thermodynamic forces �SSGN and �SSSS satisfy
ð�SSGNÞ�aa�bb ¼ J i�1eFF i	�a
�aa

oeww
o~AAeab

eFF ib
��bb ¼ oeww

o�AAe�aa
�bb
; �SSSS ¼

ffiffiffiffi
J i�1

p oeww
o~eeSS

¼ oeww
o�eeSS

; ð83Þ
with
�AAe � J ieFFi�1 ~AAeTeFF i�	; �eeSS �
ffiffiffiffi
J i

p
~eeSS ð84Þ
the densities of GNDs and SSDs, respectively, pulled back from ~bbint to �bbp. As a more particular
constitutive assumption, we represent the hardening variable for each slip system as a linear
combination of the thermodynamic force conjugates to the densities of GNDs and SSDs parti-
tioned to all systems, i.e.,
�jji ¼ �jji
0 þ

ffiffiffiffiffiffiffiffiffi
bGN

�1
p

hiGNj
�SSj
GN þ hiSSj�SS

j
SS; ð85Þ
where �jji
0 is the initial friction or threshold stress for system i, hiGNj and hiSSj comprise n� n slip

system interaction matrices (dimensionless units) to be obtained from experimental measurements
of self- and latent hardening (cf. [96]), bGN is the length parameter for normalization,
�SSj
GN � jh�ssj; �SSGN � �mmjij ð86Þ
is the scalar magnitude of the projected lattice couple stress associated with the GND tensor on
slip system j (with the dot product here denoting a contraction of indices on the cotangent space
of �bbp), and �SSj

SS is the lattice stress associated with the SSDs on slip system j. The strain measures of
SSDs, �eeiSS, are defined by an additive decomposition of the statistically stored line densities on
each slip system, �qqi

SS:
�qqSS ¼
Xn
i¼1

�qqi
SS ) �eeSS � ~bb

ffiffiffiffiffiffiffi
�qqSS

p
¼ ~bb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

�qqi
SS

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ð�eeiSSÞ
2

s
) �eeiSS ¼ ~bb

ffiffiffiffiffiffiffi
�qqi
SS

q
: ð87Þ
The corresponding thermodynamic force is then, from (58)4, (84), and (87),
�SSi
SS �

oeww
o�ee iSS

¼ oeww
o�eeSS

o�eeSS
o�ee iSS

¼ oeww
o~eeSS|{z}
c3l~eeSS

o~eeSS
o�eeSS|{z}ffiffiffi

J i�1
p

�eeiSS
�eeSS

 !
¼ c3l

ffiffiffiffi
J i�1

p
~eeiSS ¼ c3lJ i�1�eeiSS; ð88Þ
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providing a hardening contribution in (85) proportional to the square root of the dislocation line
density per unit volume, as originally suggested by Taylor [97] and since verified experimentally
numerous times (cf. [56,98]), and used in both local crystal plasticity theories (cf. [99,100]) and
gradient-based theories [34,39,37]. The GND (scalar) couple stresses �SS i

GN are found explicitly in
terms of the tensorial density of GNDs by inserting (58)3 into (86):
�SSi
GN ¼ �ssi�aaJ i�1eFF i	�a

�aa

oeww
o~AAeab

eFF ib
��bb �gg

�bb�vv �mmi
�vv

�����
����� ¼ bGNlJ

i�1 j�ssi�aaeFF i	�a
�aa

~AAe
ba
eFF ib
��bb �gg

�bb�vv �mmi
�vvj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

��AAi
GN

¼ bGNlJ
i�1�AAi

GN ð89Þ
with �AAi
GN a scalar measure of GNDs on slip system i. Substituting Eqs. (88) and (89) into Eq. (85)

then gives
�jji ¼ �jji
0 þ lJ i�1

ffiffiffiffiffiffiffiffiffi
bGN

p
hiGNj

�AAj
GN

�
þ c3hiSSj�ee

j
SS

	
: ð90Þ
The contribution of GNDs to individual glide system resistances was previously suggested by
Acharya and Bassani [33,73], Acharya and Beaudoin [101], and Bassani [74], for rate-dependent
and/or rate-independent single crystal plasticity, similarly to the second term in our Eq. (90).

Many have used the conjugate stress to a tensorial GND measure as a contribution to a
backstress on each slip system, rather than a contribution to slip system resistance �jji as in our
Eq. (90), with a variety of different ways proposed for projecting the tensorial backstress onto
individual glide systems [9,28,32,34,36,37,101]. If both a backstress and a glide stress are desirable
in order to completely characterize the hardening behavior (cf. [102]), then we can generalize the
flow rule in Eq. (80) to
_cci ¼ _kksgnð�ppi � �vviÞ �ppi � �vvi

�jji

�����
�����
m

; ð91Þ
where increases in the friction stress �jji > 0 now manifest only from SSDs:
�jji ¼ �jji
0 þ ðc3lJ i�1ÞhiSSj�ee

j
SS; ð92Þ
and where the backstress �vvi, not necessarily positive in sign, depends solely upon the density of
GNDs (cf. [34]):
�vvi ¼ ðlJ i�1
ffiffiffiffiffiffiffiffiffi
bGN

p
ÞhiGNj

�AAj
GN: ð93Þ
In Eqs. (92) and (93), hiSSj and hiGNj are slip system interaction matrices, different in value, but not
in function, from those introduced already in (85). Different, and perhaps more inclusive, ways of
expressing the contributions of �SSGN to hardening on each slip system than the direct projection
method of Eq. (86) also merit further exploration (see e.g. [28,35,36]).

While the density of geometrically necessary dislocations can be calculated directly from spa-
tial gradients of the elastic lattice deformation (Eq. (49)), the densities of statistically stored
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dislocations on each slip system are modeled here as internal state variables (ISVs) equipped with
separate equations dictating their evolution. By definition, the time rate of change in dislocation
density for a given slip system, _�qq�qqi

SS, and the rate of the corresponding dimensionless lattice strain
measure _�ee�eeiSS for that slip system are related by
2_�ee�eeiSS ¼ ~bb
ffiffiffiffiffiffiffi
�qqi
SS

�1

q� �
_�qq�qqi
SS: ð94Þ
A general evolution equation for each dislocation density �qqi
SS is now suggested:
_�qq�qqi
SS ¼ _�qq�qqi

SSðf�SS
j
SSg; f�SS

j
GNg; f�ppjg; �SSiÞ ðj ¼ 1; . . . ; nÞ: ð95Þ
As is clear from (95), the dislocation density rate on a particular system i generally includes
contributions from the slip rate on the j-th system, via the �ppi¼j dependence, as well as the con-
tributions of the slip rates of other systems, through the �ppi6¼j dependence. Likewise, the rate of �qqi

SS

may be influenced by the current statistically stored densities on all slip systems through the f�SSj
SSg

dependency [80,91]. Since interactions between SSDs and GNDs are not ruled out (e.g., trapping
or annihilation), we also allow the densities of GNDs on all slip systems to enter the evolution law
for a given system, through the f�SSj

GNg dependency. Finally, the dependency of _�qq�qqi
SS on

�SSi � eFFi�1eSSieFFi�T, the pull-back to �bbp of the force conjugate to the stretch associated with micro-
scopic heterogeneity within the volume element, is included since the formation of intragranular
cellular structures will likely spur dislocation generation and annihilation at misoriented subgrain
boundaries [60]. Notice also that eFFi will implicitly affect the density of GNDs through its presence
in the multiplicative decomposition of the total deformation gradient, Eq. (48). More specific rate
equations for the SSDs, with dislocation populations further divided into mobile and immobile
parts [4,99,100] and accounting for hardening and recovery on each system at different stages of
plastic deformation (cf. [34,39]) are also envisioned as possible implementations of (95).

With the evolution of F
p
and the strain hardening prescribed by Eqs. (74)–(95), we now turn

our attention to the evolution of the eFFi tensor. The following general evolution equation, referred
to configuration ~bbint, is now proposed for the rate of stretching attributed to eFFi:
_eVVeVV i
¼ _eVVeVV i

ðePP; eSSi; eSSGN; eSSSSÞ; ð96Þ
and a similar dependency is proposed for the rate of rotation arising from eFFi, i.e.,
fWWi � _eRReRR i eRR iT ¼ fWWiðePP; eSSi; eSSGN; eSSSSÞ: ð97Þ
More specific forms of (96) and (97) have not yet been developed. However, previous computa-
tional micromechanical solutions indicate that the magnitude of eVVi should remain small in
comparison to the magnitudes of both the total applied strain and the volume-averaged plastic
strain in deforming ductile FCC single crystals [88]. The normalized stretch associated with eVVi was
non-negligible, however, and did attain a magnitude comparable to that of the recoverable elastic

strain eCCe in these calculations, as shown in Fig. 6(b). Guidance in formulating Eq. (96) can also
stem from the contribution of eVVi to the stored energy of cold work, as demonstrated in the data of
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Fig. 6(a) and suggested in the Helmholtz free energy function (68). We also must note that the
calculations used to generate data for Fig. 6 employed local crystal plasticity theory within
subgrains, so the influence of GNDs as defined in the present work was neglected in that study
[88].

While we currently lack any specific data for the evolution of the rotation tensor eRR i, additional
motivation for its inclusion in our crystal plasticity model is acquired by considering the de-
composition of the total vorticity in the intermediate configuration ~bbint:
ðeLLÞskew � fWW ¼ ðReT _RReÞskew|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�eWWe

þðReTVe�1 _VVeReÞskew þ ð _eVVeVVi eVVi�1Þskew þ ðeVVi
_fRiRifRiRi eRRiT eVVi�1Þskew|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ðeVV ieWW ieVV i�1Þskew

þfWWp;

ð98Þ
where all skew-symmetrization is conducted with respect to the metric ~gg. Assume for the moment
that plastic spin fWWp, spin due to residual stretching rate

_eVVeVV i
, and total spin fWW are prescribed,

respectively, via the evolution equations for crystalline slip (Eqs. (74) and (80) or (91)), the
evolution equation for strain due to subdivision/heterogeneity (Eq. (96)), and the displacement
boundary conditions. Furthermore, assume that second term on the right-hand side of Eq. (98),
the elastic spin due to _VVe, which is known through an appropriate rate form of the constitutive
relationship (63) between the applied stress and elastic strain, is negligible in comparison to the
other terms in (98) by the typical assumption of small elastic strains in engineering metals. As

mentioned previously, since eVV i is expected to not exceed the same order of magnitude reached by
Ve, neglecting the third term in (98) may also be a valid assumption. Under these assumptions, the
skew elastic spin fWWe is then found as
fWWe 
 fWW �fWWp � ðeVV ifWWi eVV i�1Þskew: ð99Þ
Recall that Fe provides the current configuration orientations of the ‘‘average’’ slip plane normals
and slip directions in our crystal plasticity framework by virtue of Eq. (75); i.e., texture evolution
is essentially specified by the time rate of Fe (cf. [103]). With the assumption of small recoverable
elastic strains, we have Fe 
 Re, and the time rate of elastic rotation dictates texture evolution.
Essentially, we are at liberty to completely control texture evolution through prescription of fWWi,
which in turn can be thought of as the contribution to the total spin from intragranular dislo-
cation substructure formation (e.g., grain subdivision processes). For example, if we specifyfWWi ¼ ðeVV i�1ðfWW �fWWpÞeVViÞskew, then texture evolution (i.e., elastic spin) will be largely precluded
due to substructure development within the crystalline volume element. On the other hand if we
setfWWi ¼ 0 for our evolution law (97), then crystal lattice orientations will evolve as in the classical
crystal plasticity theory. Numerical simulations [50,104] have shown that the classical theory, withfWWi ¼ 0, gives texture predictions that are consistently too-sharp for certain FCC polycrystals, at
least within the framework of Taylor�s [105] constraints. So by correlating potential evolution
Eqs. (97) with experimental texture measurements, one could conceivably formulate evolution
laws for fWWi, as speculated by Butler and McDowell [50]. Since grain subdivision and substructure
development are energetically favorable, and hence expected, for some materials even under

application of macroscopically uniform boundary conditions [7,43,98]
_eVVeVVi

and/orfWWi should attain



454 J.D. Clayton et al. / International Journal of Engineering Science 42 (2004) 427–457
non-zero values during some point in the history of uniform deformation applied to such ma-
terials.

In closing the discussion of evolution equations, we emphasize that when completely devel-
oping Eqs. (95)–(97), which we have left quite general in this work, one should also consider the
restrictions on thermodynamic admissibility stemming from the complete dissipation inequality,
Eq. (67). While we have included terms associated with dislocation defect densities and residual
elasticity in the free energy function (68), in most metals their total cumulative contribution to the
first and second laws of thermodynamics, (54) and (55), will remain relatively small in magnitude
compared to that of the plastic dissipation due to dislocation motion (77), in agreement with
experimental measurements of the stored energy of cold working [106,107]. This observation is
fully consistent with the framework presented here (cf. Eq. (68)); the contribution of incompat-
ibility- related tensors (i.e., eFFi and defect densities) to the free energy is small when averaged over
the entire volume of the crystal(s). The relatively small magnitude of this energetic contribution is
scaled correctly by the appropriate choice of material parameters in (68). However, in our
opinion, the residual elastic energy associated with crystal defects and elastoplastic incompati-
bility should not be neglected, as its local density may attain much greater magnitudes in the
vicinity of local heterogeneities such as grain or phase boundaries, and its release may facilitate
void growth, fracture, shear localization, recrystallization, and/or phase transition processes in
many metals [88,108].
5. Conclusions

We have used explicit volume averaging procedures (Sections 2 and 3) to motivate a continuum
formulation of gradient crystal plasticity (Section 4). Notable features include

• A three-term multiplicative decomposition for the deformation gradient, F ¼ FeeFF iF
p
, with Fe

associated with the average applied stress and total lattice rotation, eFFi accounting for the pos-
sible development of heterogeneous dislocation substructures and residual elasticity, and �FFp

accounting for the history of plastic deformation due to dislocation motion.
• Prescription of a resolved Eshelby-type stress measure as a driving force for plastic shearing

rates, in order to ensure a positive dissipation contribution from the plastic velocity gradient.
• Slip system-level strain hardening dependent upon conjugate thermodynamic forces to densities

of GNDs and SSDs.
• Allowance of eFFi, the kinematic measure of intragranular heterogeneity and possible subdivi-

sion, to influence the evolution of dislocation densities, and vice-versa.
• Allowance of a measure of residual elasticity––the stretch associated with eFFi––to account for a

fraction of the stored energy of cold work, influence the effective elastic moduli in the unloaded
configuration, and provide a residual free energy term biased by the applied stress.

Our framework offers powerful tools for addressing multiscale issues in plasticity, most notably
providing a very rigorous (i.e., mathematically precise) methodology for characterizing kinematics
and thermodynamics with changes in scale of observation. Future work should focus on deter-
mination of more precise evolution equations for eFFi and the dislocation densities, determination
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of the needed material parameters (e.g., hardening coefficients and length scale constants), and
exploration of boundary conditions. Micromechanical simulations of representative defect pop-
ulations invoking discrete dislocation dynamics relations [109–111] are foreseen as valuable tools
for deducing evolution laws and model parameters. Extensions to other defects (e.g., disclinations,
point defects, and damage), temperature effects, and dynamic conditions are also envisioned.
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